Annual Monitoring Report

Monitoring Year 2 of 7

FINAL

Cochran Stream and Wetland Restoration Site NCDMS Contract No.: 004947
NCDMS Project No.: 95720

Macon County, NC

Data Collected: March 2016 – October 2016

Date Submitted: November 2016

Submitted to:
North Carolina Division of Mitigation Services
NCDEQ-DMS, 1652 Mail Service Center Raleigh NC 27699-1652

Prepared for:

302 Jefferson Street, Suite 110 Raleigh, North Carolina 27605

Prepared by:

balance through proper planning

37 Haywood Street, Suite 100 Asheville, North Carolina 28801

Contents

1.0	Project Summary	1
1.1.		
1.2.	·	
1.3.		
1.4.		
2.0	Methods	
3.0	References	
Appen	dix A General Tables and Figures	
	dix B Visual Assessment Data	
	dix C Vegetation Plot Data	
	dix D Stream Geomorphology Data	
Appen	dix E Hydrologic Data	65

1.0 PROJECT SUMMARY

1.1. Goals and Objectives

The overall goals address the stressors identified in the TLW and include the following:

- Improve water quality within the restored channel reaches and downstream watercourses by reducing sediment and nutrient inputs and increasing dissolved oxygen levels
- Improve local aquatic and terrestrial ecological function through increased stream shading, habitat complexity, and availability of organic/woody material
- Improve aquatic and benthic habitat and associated streambed form
- Improve site hydrology, wetland functions, and attenuation of flood flows
- Provide riparian area and wetland restoration with a native plant community
- Protect the site from future land impacts

The specific project objectives that are intended to target the above goals include the following:

- Implement Priority I and II restoration of 1,882 feet of stream and rehabilitation/re-establishment of 4.35 acres of wetlands
- Implement appropriate changes in dimension, pattern and/or profile to establish geomorphically stable conditions within the project reaches
- Modify degraded stream channels to enable proper sediment transport capacity and improved streambed form
- Integrate in-stream structures and native bank vegetation
- Re-grade the floodplain to remove drainage ditches, spoil berms, and overburden soil
- Plant native woody and herbaceous riparian vegetation within a minimum width of 30 feet from the edge of the restored channels and throughout the restored wetland area
- Eradicate invasive, exotic or undesirable plant species
- Install livestock exclusion fencing
- Establish a permanent conservation easement

1.2. Success Criteria

1.2.1. Morphological Parameters and Channel Stability

Restored and enhanced streams are in compliance with the standards set forth in the USACE 2003 Stream Mitigation Guidelines and the "Ecosystem Enhancement Program Monitoring Requirements and Performance Standards for Stream and Wetland Mitigation" dated November 7, 2011. Restored and enhanced streams should demonstrate morphologic stability to be considered successful. Stability does not equate to an absence of change, but rather to sustainable rates of change or stable patterns of variation. Restored streams often demonstrate some level of initial adjustment in the several months that follow construction and some change/variation subsequent to that is also to be expected. However, the observed change should not be unidirectional such that it represents a robust trend. If some trend is evident, it should be very modest or indicate migration to a stable form.

Dimension - Cross-section measurements should indicate little change from the as-built cross-sections. If changes do occur, they will be evaluated to determine whether the adjustments are associated with increased stability or whether they indicate movement towards an unstable condition.

Pattern and Profile - Visual inspection of the pattern and profile should indicate stability with little deviation from as-built conditions for the restored stream. Pool depths may vary from year to year, but the majority should maintain depths sufficient to be observed as distinct features. The pools should maintain their depth with flatter water surface slopes, while the riffles should remain shallower and steeper. Pattern and profile measurements will not be collected unless conditions seem to indicate that a detectable and detrimental change appears to have occurred.

Substrate - Calculated D_{50} and D_{84} values should indicate coarser size class distributions of bed materials in riffles and finer size class distributions in pools. The majority of riffle pebble counts should indicate maintenance or coarsening of substrate size class distributions. Generally, it is anticipated that the bed material will coarsen over time.

Sediment Transport - Depositional features should be consistent with a stable stream that is effectively managing its sediment load. Point bar and inner berm features, if present, should develop without excessive encroachment of the channel. Isolated development of robust (i.e. comprised of coarse material and/or vegetated actively diverting flow) mid-channel or lateral bars will be acceptable. Likewise, development of a higher number of mid-channel or lateral bars that are minor in terms of their permanency such that profile measurements do not indicate systemic aggradation will be acceptable, but trends in the development of robust mid-channel or alternating bar features will be considered a destabilizing condition and may require intervention or have success implications.

1.2.2. Surface Water Hydrology

Monitoring of stream surface water stages should indicate recurrence of bankfull flow on average every 1 to 2 years. At a minimum, throughout the monitoring period, the surface water stage should achieve bankfull or greater elevations at least twice. The bankfull events must occur during separate monitoring years.

1.2.3. Groundwater Hydrology

The USACE defines minimum hydrology for jurisdictional wetlands to be saturation within 12 inches of the surface for at least 5% of the growing season if soils and vegetation meet jurisdictional criteria. Given that hydric soils are present throughout the restoration area but that wetland vegetation will be newly established, it is reasonable to set the minimum hydrology threshold slightly above the jurisdictional minimum threshold. As such, the minimum performance standard is set to provide saturated soils within 12 inches of the surface for at least eight percent (8%) of the growing season under average climatic conditions. In the event of non-typical years of climatic conditions, groundwater monitoring data should demonstrate similar hydro-periods when compared to reference wetland groundwater data. The reference wetland site will be the NCDMS Cat Creek Stream and Wetland Restoration Site – NCDMS Project #71 - located east of Franklin in Macon County, NC. The growing season for the site was based on the Natural Resource Conservation Service (NRCS) WETS dataset for Macon County (http://agacis.rccacis.org/37113/wets). The Macon County dataset is based on a site with elevations roughly the same as the project site. According to NRCS, the growing season for Macon County is defined to be the period with a 50% probability that the daily minimum temperature is higher than 28°F. At the project site, this period extends from April 16th to October 19th for a total of 187 days. Based on this, wetland hydrology success will be achieved if the water table is within 12 inches of the soil surface for one or more periods of at least 15 consecutive days during the growing season.

1.2.4. Vegetation

Riparian vegetation monitoring shall be conducted for a minimum of seven years to ensure that success criteria are met per USACE guidelines. Accordingly, success criteria will consist of a minimum survival of 260 planted stems per acre by the end of the Year 5 monitoring period and a minimum of 210 planted stems per acre at the end of Year 7. If monitoring indicates either that the specified survival rate is not being met or the development of detrimental conditions (i.e., invasive species, diseased vegetation), appropriate corrective actions will be developed and implemented. Additionally, planted vegetation must average 8 feet in height in each plot at year 7 (as defined in the USACE 2003). If this performance standard is met by year 5 and stem density is trending toward success (i.e., no less than 260 five year-old stems/acre) monitoring of vegetation on the site may be terminated provided written approval is given by the USACE in consultation with the North Carolina Interagency Review Team (NCIRT).

1.3. Project Setting and Background

The Cochran Branch Mitigation Project (The Site) is located approximately 6 miles northwest of Franklin, North Carolina at latitude 35°12'52" N and longitude 83°29'20" W. The Site encompasses approximately 10 acres of agricultural land and consists of two streams, Cochran Branch and Parrish Branch, along with 4.35 acres of wetlands on the Cochran Branch floodplain. The Site lies within the Little Tennessee River Watershed N.C. Division of Water Resources (DWR) sub-basin 04-04-01 and local HUC 06010202040020. The project is located within the NCDMS Iotla Creek targeted local watershed (TLW) and within the Franklin to Fontana local watershed plan (LWP). Cochran Branch drains to Burningtown Creek approximately 0.5 miles downstream of the project. Burningtown Creek is classified as B;Tr by NCDEQ.

1.4. Project Performance

Monitoring Year 2 (MY2) data was collected from March through October 2016. Monitoring activities included visual assessment of all reaches and the surrounding easement, collection of images at eight permanent photo stations, and inventory of eight permanent vegetation monitoring plots.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly Restoration Plan) documents available on the NCDMS website (http://portal.NCDEQ.org/web/eep). All raw data supporting the tables and figures in the appendices is available from DMS upon request.

1.4.1. Vegetation

Visual assessment of vegetation outside of the monitoring plots (Appendix B – Table 6) indicates that the herbaceous vegetation is becoming well established throughout the project. Populations of Chinese privet (*Ligustrum sinense*) and multiflora rose (*Rosa multiflora*) were treated during February and June 2016 with good efficacy. Follow-up treatments will be performed as needed during future monitoring years.

Monitoring of the permanent vegetation plots (n = 8; VP) was completed during Junes 2016. Summary tables and photographs associated with MY2 monitoring are located in Appendix C. MY2 monitoring data indicates that all but VP-6 are on track to meet the MY3 interim success criteria of 320 planted stems per acre. Planted stem densities among plots ranged from 121 to 688 planted stems per acre with an annual mean of 541 planted stems per acre across all plots. A total of 12 species were documented within the plots. When volunteer stems are included, the mean annual total stems per acre rose to 607 and ranged between 243 and 728 stems per acre. The lack of success in VP-6 can likely be attributed to the

3

location of this plot on top of a small knoll, where it is generally dryer, followed by a dry summer. Additionally, vegetation within and surrounding the plot is dominated by fescue (*Festuca* spp.). This area will be replanted during the early part of 2017.

1.4.2. Stream Geomorphology

Visual assessment of the stream channel was performed to document signs of instability, such as eroding banks, structural instability, or excessive sedimentation. No indication of instability was observed during visual assessment and all structures are functioning as designed (Appendix A Figure 2 and Appendix B Table 5). Of note, a small 8 to 10 inch rainbow trout was found in one of the lower pools located within Cochran Branch.

Stream geomorphic data, including cross-sections, pebble counts, and bank pin arrays were not collected during monitoring year 2 activities per the monitoring guidance and schedule stated in the Mitigation Plan and As-Built Baseline Documents. This data will be collected in monitoring year 3 and documented in the MY3 report.

1.4.3. Groundwater and Stream Hydrology

During MY2, all eight of the groundwater monitoring wells met the 8% hydroperiod success criteria (Appendix E Table 13), even though dry conditions persisted at the Site. Hydroperiods among the monitoring wells ranged from 21.4% to 100%, with total number of consecutive days within 12 inches of the soil surface ranging from 40 to 187. Groundwater monitoring well number 1, located just outside of the wetland re-establishment area, also met success criteria with a hydroperiod of 21.4%.

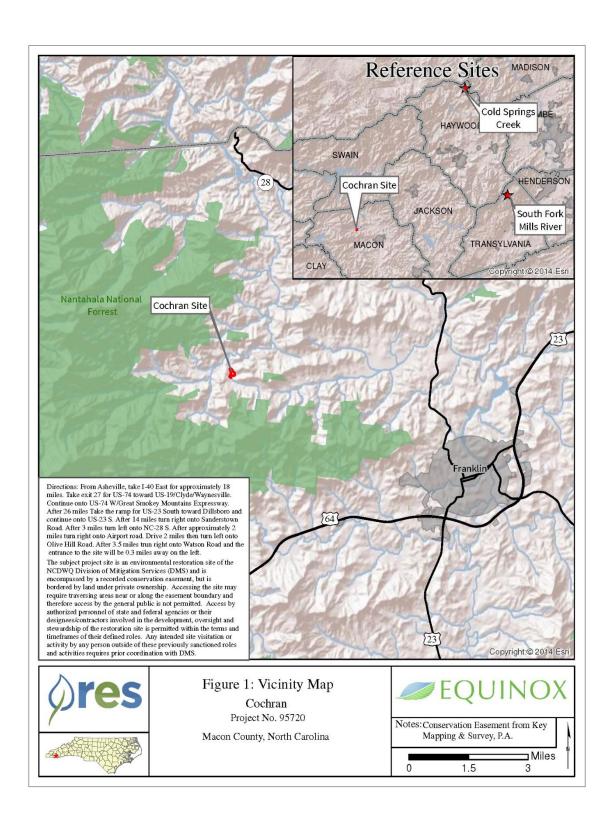
Two bankfull events occurred on Cochran Branch (mainstem) during 2016, one each during March and August. These events measured 0.68 and 0.58 feet above bankfull (Appendix E Table 12). These are the second and third bankfull events recorded on Cochran Branch since project completion.

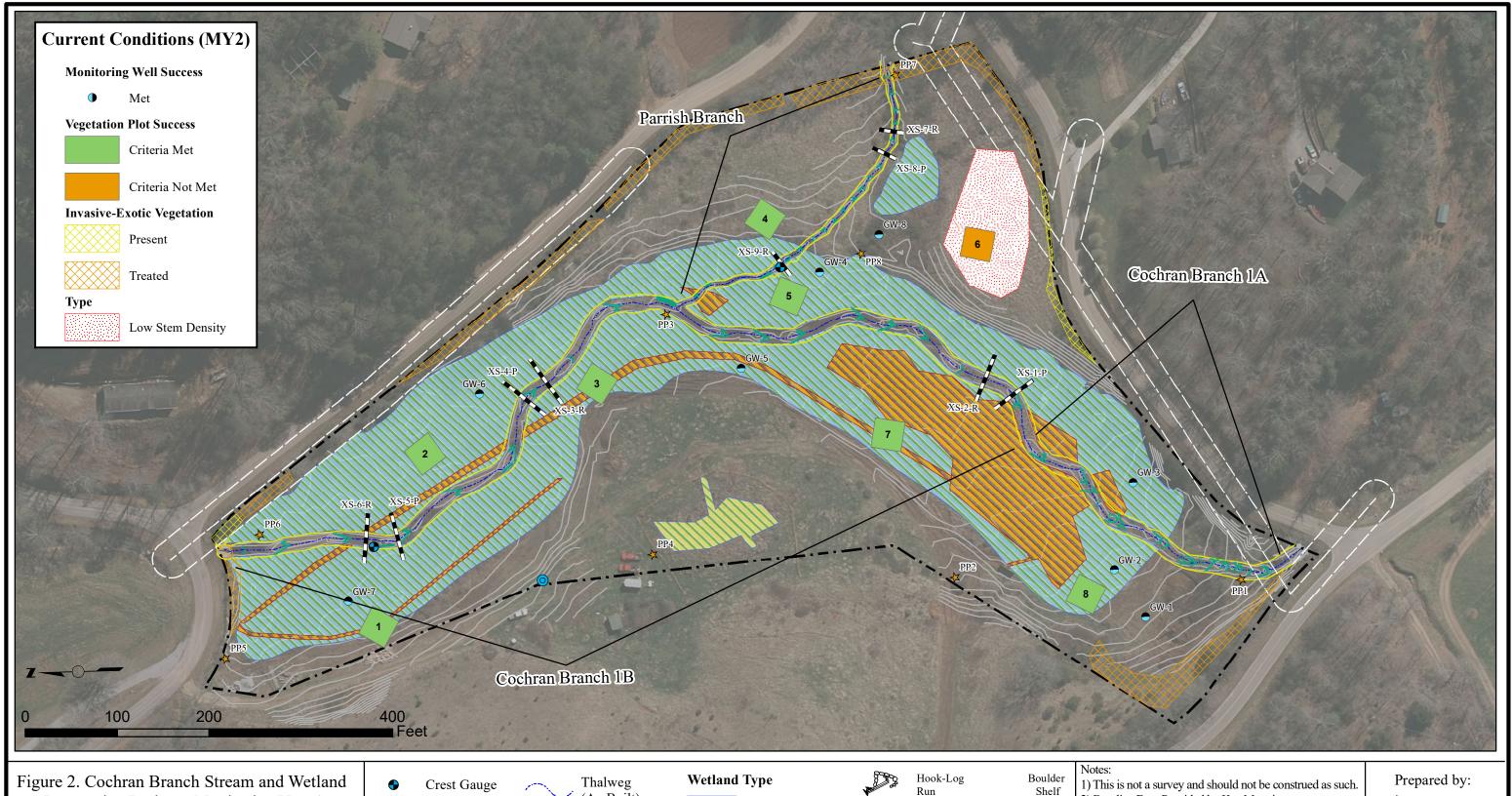
2.0 METHODS

This report presents the results of the Monitoring Year 2 (MY2) visual, hydrologic, and vegetation data and the Monitoring Year 1 (MY) morphological data collection. Permanent photo station photos were collected during the initial visual assessment; during leaf-off conditions. Additional photos of vegetation or stream problem areas were taken as needed.

Geomorphic measurements were taken during low flow conditions using a Nikon® NPR 332 Total Station. Three-dimensional coordinates associated with cross-section data was collected in the field and geo-referenced (NAD83 State Plane feet FIPS 3200). Morphological data was collected at 9 cross-sections. Survey data was imported into CAD, ArcGIS®, and Microsoft Excel® for data processing and analysis. Channel substrate was characterized using a Wolman Pebble Count as outlined in Harrelson et al. (1994) and processed using Microsoft Excel.

Vegetation success is being monitored at 8 permanent monitoring plots. Vegetation monitoring follows the CVS-EEP Level 2 Protocol for Recording Vegetation, version 4.2 (Lee et al. 2008) and includes analysis of species composition and density of planted species. Data is processed using the CVS data entry tool. In the field, the four corners of each plot were permanently marked with rebar and photos of each plot taken from the origin each monitoring year.


Precipitation data was collected using an Onset HOBO Data Logging Rain Gauge. Groundwater for hydrologic success of restored wetlands was monitored using eight HOBO U20 Water Level Loggers. An


additional logger was installed on site, above ground, for use as a barometric reference. Data loggers collected depth to groundwater daily and all data were processed using HOBOware and analyzed using Microsoft Excel. Bankfull events were documented with two crest gauges, one each being located on Cochran Branch and Parrish Branch. During quarterly visits to the site, the height of the corkline was recorded and cross-referenced with known bankfull elevations at each crest gauge.

3.0 REFERENCES

- Environmental Banc & Exchange, LLC. 2014. Cochran Branch, Final Mitigation Plan, Macon County, North Carolina. NCEEP Project No. 95720
- Harrelson, Cheryl, C. Rawlins and J. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Rocky Mountain Forest and Range Experiment Station. USDA Forest Service. Fort Collins, Colorado
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. http://cvs.bio.unc.edu/methods.htm; accessed November 2008.
- USACE (U.S. Army Corps of Engineers). 2003. Stream Mitigation Guidelines. U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, North Carolina Wildlife Resources Commission, North Carolina Department of Environment and Natural Resources-Division of Water Quality. Wilmington District.

Appendix A General Tables and Figures

Restoration Project - Monitoring Year 1 Current Conditions Plan View Macon County, NC NCDMS Contract No. 004370 NCDMS Project No.: 95720 October 2016

Rain Gauge Photo Points Cross-Sect...

(As-Built) Top of Bank

Duke ROW Contour

Easement

Enhancement Re-establishment Re-habilitation

Hook Run

Log Vane

Brush

Toe

2) Baseline Data Provided by Kee Mapping 3) Orthoimagery provided by NCOneMap (2010)

Table 1. Project Components and Mitigation Credits Cochran Stream and Wetland Restoration Project Mitigation Credits

	Stream		Pinari	an Wetland		riparian etland	Buffer	Nitrogen Nutrient Offset	Phosphorous Nutrient Offset
	Stream		Kipai	ali Wetlaliu	VV	ctianu	Builei	Nutrient Offset	Nutrient Offset
Type	R	RE	R	RE	R	RE			
Totals	1,820		4.24	0.06			-	-	-

Project Components

Project Component -or- Reach ID	Stationing/Location	Existing Footage/Acreage	Approach (PI, PII etc.)	Restoration - or- Restoration Equivalent	Restoration Footage or Acreage ¹	Mitigation Ratio
Cochran Branch	100+60 - 115+05	1332	PI	R	1,418	1:1
Parrish Branch	200+15 - 204+11	232	PII	R	402	1:1
Wetland Area 1		-	Re-Est.	R	3.33	1:1
Wetland Area 1		0.88	Re-Hab.	R	0.82	1:1
Wetland Area 2		0.11	Enh.	RE	0.11	2:1
Wetland Area 3		-	Re-Est.	R	0.09	1:1

Component Summation

	Stream ¹	Riparian Wetland		Non-riparian Wetland	Buffer	Upland
Restoration Level	(linear feet)	(acres)		(acres)	(square feet)	(acres)
		Riverine	Non-Riverine			
Restoration	1,820	-	4.24	-	-	-
Enhancement	-	-	0.11	-	-	-
Enhancement I	-		-	-	-	-
Enhancement II	-	-	-	-	-	-
Creation	-	-	-	-	-	-
Preservation	-	-	-	-	-	-
Preservation	-	-	ı	-	-	-

BMP Elements

Element ²	Location	Purpose/Function	Notes
FB	Entire Site	Protect Stream	

¹Restoration footage accounts for no credits in crossings, exclusions, and powerline ROWs.

²BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; S = Grassed Swale; LS = Level Spreader; NI = Natural Infiltration Area; FB = Forested Buffer

Table 2. Project Activity and Reporting History Cochran Stream and Wetland Restoration Project							
Activity or Report	Data Collection Complete	Completion or Delivery					
Mitigation Plan	Aug - 2014	Sept - 2014					
Final Design - Construction Plans	Oct - 2014	Oct - 2014					
Construction	N/A	May - 2015					
Permanent Seed Mix Applied	May - 2015	May - 2015					
Live Stake and Bare Root Plantings	May - 2015	May - 2015					
Baseline Monitoring Document (Year 0 Monitoring - Baseline)	Jun - 2015	Aug - 2015					
Invasive-Exotic Vegetation Treatment	-	Jun - 2015					
Year 1 Monitoring	Dec - 2015	Jan - 2016					
Invasive-Exotic Vegetation Treatment	-	Feb - 2016					
Invasive-Exotic Vegetation Treatment	-	Jun - 2016					
Year 2 Monitoring	Mar - 2016	Nov - 2016					
Year 3 Monitoring							
Year 4 Monitoring							
Year 5 Monitoring							
Year 6 Monitoring							
Year 7 Monitoring							

Table 3. Project Contacts					
Cocl	nran Stream and Wetland Restoration Project				
	Resource Environmental Solutions, LLC				
Prime Contractor	302 Jefferson Street; Suite 110				
Prime Contractor	Raleigh, North Carolina 27605				
	Daniel Ingram (919) 209-1056				
	Wolf Creek Engineering				
D'	12 1/2 Wall Street Suite C				
Designer	Asheville, North Carolina 28801				
	S. Grant Ginn (828) 449-1930				
	Northstate Environmental				
	2889 Lowery Street				
Construction Contractor	Winston Salem, North Carolina 27101				
	Darrell Westmoreland (336) 725-2010				
	Northstate Environmental				
	2889 Lowery Street				
Seeding Contractor	Winston Salem. North Carolina 27101				
	Darrell Westmoreland (336) 725-2010				
	Resource Environmental Solutions, LLC				
	302 Jefferson Street; Suite 110				
Planting Contractor	Raleigh, North Carolina 27605				
	David Godley (919) 209-1053				
	Kee Mapping and Surveying				
	PO Box 2566				
As-built Surveys	Asheville, North Carolina 28802				
	Phillip B. Key (828) 575-9021				
	Northstate Environmental				
	2889 Lowery Street				
Seeding Mix Source	Winston Salem, North Carolina 27101				
	Darrell Westmoreland (336) 725-2010				
	Arborgen				
	5594 Higway 38 South				
	Blenheim, SC 29516				
	(843)528-9669				
Bare Root Seedlings	North Carolina Foresty Claridge Nursery				
	762 Claridge Nursery Road				
	Goldsboro, North Carolina 27530				
	·				
	(919) 731-7988				
	Foggy Mountain Nursery 2251 Ed Little Road				
Live Stakes					
	Creston, North Carolina 28643				
	(336) 384-5323				
Monitoring Performers	Equinox Environmental				
(MY0-MY2)	37 Haywood St.				
2015 - 2016	Asheville, North Carolina 28802				
	Drew Alderman (828) 253-6856				

	Table 4. Project	Baseline Inform	ation and Attrib	ıtes			
		Project Informat	tion				
Project Nan	ne	e Cochran Branch					
County				Macon County			
Project Area (a	cres)			10.06			
Project Coordinates (latitu				2.03" N, 83°29'20.	10" W		
	Project Wa	atershed Summa	ry Information				
Physiographic Pi	rovince			Blue Ridge			
River Basin	1			Little Tennessee			
USGS Hydrologic Unit 8-digit	06010203	USGS	S Hydrologic Unit 14-D	igit	60	10202040020	
DWQ Sub-ba	sin			40-04-01			
Project Drainage Ar	rea (acres)			811			
Project Drainage Area Percenta	ge of Impervious Area			<5%			
CGIA Land Use Clas	ssification		2.01.0	3 Hay and Pasture I	Land		
	Rea	ch Summary Info	rmation				
Parameter	rs	Cochran Branch	Parrish Branch				
Length of reach (li	near feet)	1332	232				
Valley classification	(Rosgen)	II	II				
Drainage ar	ea	1.25	0.11				
NCDWQ stream identi	fication score	48	40				
NCDWQ Water Quality	Classification	B, Tr	B, Tr				
Morphological Description (str	ream type) (Rosgen)	G4	G4				
Evolutionary trend	(Rosgen)	$G \rightarrow F \rightarrow C \rightarrow E$	$G \rightarrow F \rightarrow B$				
Underlying mapp	ed soils	NkA	NkA, ScC				
Drainage cla	iss	Verry Poorly	Very Poorly Drained,				
		Drained	Mod Well Drained				
Soil Hydric st Slope	atus	Hydric 0.7%	Hydric, Non-Hydric 4.2%				
FEMA classific	ation	N/A	N/A				
Native vegetation co		Agricultural	Agricultural				
Percent composition of exotic	•	6%	0%				
k.		and Summary Inf	formation				
Parameter		A	В	С	D	E	
Area (Acre		4.24	0.11				
Wetland Type (non-riparian, riparian riv		Riparian Non-Riverine	Riparian Non-Riverine				
Mapped Soil S	eries	NkA	NkA				
		Verry Poorly	Verry Poorly				
Drainage cla	ISS	Drained	Drained				
Soil Hydric St	atus	Hydric	Hydric				
Source of Hydro	ology	Groundwater	Groundwater				
Previous Hydrologic	Impairment	Dredging/Ditching	Dredging/Ditching				
Native vegetation co	ommunity	Montane Alluvial Forest	Montane Alluvial Forest				
Percent composition of exotic	invasive vegetation	0%	0%				
	Res	gulatory Conside	rations				
Regulation		pplicable?		Reso	olved?	Supporting Documentation	
Waters of the United States – Section 404	Yes		Ŋ	l'es	PCN 27 (SAW- 2013-00280)		
Waters of the United States – Section 401		Yes		Ŋ	Yes	401 Certification (DWR#-13-0188)	
Endangered Species Act	No		Y	Yes	ERTR		
Historic Preservation Act	No		Y	Yes	ERTR		
Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA)		No		N	J/A		
FEMA Floodplain Compliance		N/A			N/A		
Essential Fisheries Habitat		N/A		N	I./A		

Appendix B Visual Assessment Data

Table 5. Visual Stream Morphology Stability Assessment Cochran Stream and Wetland Restoration Project - Cochran Branch Assessed Length 1,418 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	23	23			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6).	23	23			100%			
	Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	23	23			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run).	23	23			100%			
	4. Thatweg I osition	2. Thalweg centering at downstream of meander bend (Glide).	23	23			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	0	0	100%
	T			Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	23	23			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	23	23			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	23	23			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	23	23			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	23	23			100%			

Table 5 Cont'd. Visual Stream Morphology Stability Assessment Cochran Stream and Wetland Restoration Project - Parrish Branch Assessed Length 402 feet

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	· · · · · · · · · · · · · · · · · · ·			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	22	22			100%			
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6).	22	22			100%			
	Condition	Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	22	22			100%			
	Thalweg centering at upstream of meander bend (Run). 4. Thalweg Position		22	22			100%			
	ii Thai weg Tosition	2. Thalweg centering at downstream of meander bend (Glide).	22	22			100%			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	19	19			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	19	19			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	19	19			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	19	19			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6. Rootwads/logs providing some cover at base-flow.	19	19			100%			

Table 6. Vegetation Condition Assessment Cochran Stream and Wetland Restoration Project

Planted Acreage: 10.05

Vegetation Category	Vegetation Category Definitions		Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas Very limited cover of both woody and herbaceous material.		N/A	0	0.00	0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	N/A	1	0.25	2%
		Totals	1	0.25	2%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	N/A	0	0.00	0%
		Cumulative Totals	1	0.25	2%

Easement Acreage: 10.05

Vegetation Category Definitions		CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	Cross Hatch (Red - Dense/Yellow - Present)	9	0.40	3%
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	N/A	0	0.00	0%

N/A - Item does not apply.

Cochran Branch Reach 1a – Permanent Photo Station 1 Station 101+33 - Downstream

Cochran Branch Reach 1a – Permanent Photo Station 1 Station 101+33 – Upstream

Cochran Branch – Permanent Photo Station 2 East 95°

 $\begin{array}{c} Cochran \; Branch-Permanent \; Photo \; Station \; 2 \\ South \; 186^{\circ} \end{array}$

Cochran Branch – Permanent Photo Station 3 Station 108+87 – Upstream

Parrish Branch – Permanent Photo Station 3 Station 108+87 – Upstream

Cochran Branch – Permanent Photo Station 4 South Southeast 160°

Cochran Branch – Permanent Photo Station 5 Southeast 150°

Cochran Branch – Permanent Photo Station 6 Station 114+62 – Upstream 186°

Parrish Branch – Permanent Photo Station 7 Station 200+25 – Upstream 276°

Parrish Branch – Permanent Photo Station 8 Southeast 135°

Parrish Branch – Permanent Photo Station 8 Southwest 225°

Appendix C Vegetation Plot Data

Table 7. Vegetation Plot Criteria Attainment			
Cochran Stream and Wetland Restoration Project			
Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean	
1	Yes		
2	Yes		
3	Yes		
4	Yes	990/	
5	Yes	88%	
6	No		
7	Yes		
8	Yes		

	Table 8. CVS Vegetation Plot Metadata
	ochran Stream and Wetland Restoraion Project
Report Prepared By	Drew Alderman
Date Prepared	6/9/2016 10:34
detabase name	RES_95720_2016_A_Cochran_MY2.mdb
database name database location	Z:\ES\NRI&M\EBX Monitoring\Cochran\MY2 -2016\Data\Veg
computer name	FIELD-PC
file size	60854272
	30001212
DESCRIPTI	ON OF WORKSHEETS IN THIS DOCUMENT
	Description of database file, the report worksheets, and a summary of project(s)
Metadata	and project data.
	Each project is listed with its PLANTED stems per acre, for each year. This
Proj, planted	excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes
Proj, total stems	live stakes, all planted stems, and all natural/volunteer stems.
	List of plots surveyed with location and summary data (live stems, dead stems,
Plots	missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
D	List of most frequent damage classes with number of occurrences and percent of
Damage by Spp	total stems impacted by each.
	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot. A matrix of the count of PLANTED living stems of each species for each plot;
Planted Stems by Plot and Spp	dead and missing stems are excluded.
Tranted Stellis by Flot and Spp	
ATT CA and by Disk and and	A matrix of the count of total living stems of each species (planted and natural
ALL Stems by Plot and spp	volunteers combined) for each plot; dead and missing stems are excluded.
PD	OJECT SUMMARY
Project Code	95720
project Name	Cochran Branch Stream and Wetland
Description	Cocinain Branch Stream and Wetana
River Basin	
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	8

										ems By																
										rrent P	-	ata (M	Y2 201	.6)												
		Species		Plot 1	1		Plot 2			Plot 3			Plot 4			Plot 5			Plot 6	,		Plot 7			Plot 8	
Scientific Name	Common Name		PnoL	P-all	T	PnoL	P-all	T	PnoL	P-all	T	PnoLS	P-all	T	PnoL	P-all	T	PnoI	AP-all	T	PnoL	P-all	T	PnoL'	P-all	T
Acer rubrum var. rubrum	Red Maple	Tree	1	1	1 2															3						1
Alnus serrulata	Hazel Alder	Shrub												3	3											1
Betula nigra	River Birch	Tree	1	1	1 1	4	4	4	2	2	2				2	2	2	2			3	3	3	,		1
Cephalanthus occidentalis	Common Buttonbush	Shrub							1	1	1															1
Diospyros virginiana	Common Persimmon	Tree																			1	1	1	. 7	7	7
Fraxinus pennsylvanica	Green Ash	Tree																								1
Liriodendron tulipifera var. tulipifera	Tulip-tree, Yellow Poplar, Whitewood	Tree										4	4	4	-			2	2 2	2						1
Nyssa sylvatica	Blackgum	Tree	1	1	1 1																					
Platanus occidentalis var. occidentalis	Sycamore, Plane-tree	Tree	2	2	2 2	10	10	10	4	4	4	7	7	7	11	11	11				5	5	5	j		i
Quercus	Oak	Tree	1	1	1 1	1	1	1																		1
Quercus alba	White oak	Tree							2	2	2													2	. 2	2
Quercus michauxii	Swamp Chestnut Oak	Tree	3	3	3 3				2	2	2	1	1	1	. 3	3	3	3			3	3	3	1	1	1
Quercus nigra	Water Oak	Tree										1	1	1												l
Quercus phellos	Willow Oak	Tree	4		4	2	2	2				3	3	3	1	1	1		1	. 1	4	4	4	. 4	4	4
Quercus rubra var. rubra	Northern Red Oak	Tree																								1
Salix nigra	Black Willow	Tree			4												1									<u> </u>
Sambucus canadensis	Common Elderberry	Shrub									1															
Unknown		Shrub or Tree																								l
		Stem count	13	13	3 18	17	17	17	11	11	12	16	16	19	17	17	18	3	3	6	16	16	16	14	14	14
		size (ares)		1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	7	7	7 8	4	4	4	5	5	6	5	5	6	4	4	5	5 2	2 2	2 3	5	5	5	4	4	4
	Ste	ms per ACRE	526	526	5 728	688	688	688	445	445	486	647	647	769	688	688	728	123	121	243	647	647	647	567	567	567

¹PnoLS: No livestakes included in tally; P-all: All planted stems included in tally; T: Total stems including recruitment.

	Table 9 Cont'd Total Planted Cochran Stream and We		*		,						
						Ann	ual Me	ans			
		Species	MY	72 (201	6)	MY	71 (201	15)	MY	70 (201	5)
Scientific Name	Common Name	Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T
Acer rubrum var. rubrum	Red Maple	Tree	1	1	5	1	1	1	4	4	4
Alnus serrulata	Hazel Alder	Shrub			3						
Betula nigra	River Birch	Tree	12	12	12	14	14	14	16	16	16
Cephalanthus occidentalis	Common Buttonbush	Shrub	1	1	1						
Diospyros virginiana	Common Persimmon	Tree	8	8	8						
Fraxinus pennsylvanica	Green Ash	Tree				1	1	1	2	2	2
Liriodendron tulipifera var. tulipifera	Tulip-tree, Yellow Poplar, Whitewood	Tree	6	6	6	10	10	10	27	27	27
Nyssa sylvatica	Blackgum	Tree	1	1	1						
Platanus occidentalis var. occidentalis	Sycamore, Plane-tree	Tree	39	39	39	45	45	45	48	48	48
Quercus	Oak	Tree	2	2	2	23	23	23	38	38	38
Quercus alba	White oak	Tree	4	4	4						
Quercus michauxii	Swamp Chestnut Oak	Tree	13	13	13	9	9	9	11	11	11
Quercus nigra	Water Oak	Tree	1	1	1	3	3	3			
Quercus phellos	Willow Oak	Tree	19	19	19	9	9	9	8	8	8
Quercus rubra var. rubra	Northern Red Oak	Tree							1	1	1
Salix nigra	Black Willow	Tree			5			3			
Sambucus canadensis	Common Elderberry	Shrub			1						
Unknown		Shrub or Tree							1	1	1
		Stem count	107	107	120	115	115	118	156	156	156
		size (ares))	8			8			8	
		size (ACRES)		0.20			0.20			0.20	
		Species count		12	15	_					10
	Ster	ns per ACRE	541	541	607	582	582	597	789	789	789

¹PnoLS: No livestakes included in tally; P-all: All planted stems included in tally; T: Total stems including recruitment.

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%
Recruit Stems

This Page Intentionally Left Blank

32

Cochran - Vegetation Monitoring Plot 1 June 7th, 2016

Cochran - Vegetation Monitoring Plot 2 June 7th, 2016

Cochran - Vegetation Monitoring Plot 3 June 7th, 2016

Cochran - Vegetation Monitoring Plot 4 June 7th, 2016

Cochran - Vegetation Monitoring Plot 5 June 7th, 2016

Cochran - Vegetation Monitoring Plot 6 June 7th, 2016

Cochran - Vegetation Monitoring Plot 7 June 7th, 2016

Cochran - Vegetation Monitoring Plot 8 June 7th, 2016

Appendix D Stream Geomorphology Data (No Morphological Data Collected During MY2)

This Page Intentionally Left Blank

	C	a a b wa	C+		Tal and W					eam I				onah	10 (2	70 fo	n+)							
Parameter		onal (eam a			g Con		uon	Toje			Reach		1a (3	1	Desigr	1	l l	A = 1	D:14 /	Basel	1	
1 at affect	Regi	Ontal C	our ve		1101	2113 (111	g Con	artion.			Tere	cnee	reach	Duu		<u> </u>	Jesigi	-		AS-	Built /	Basei	ine	
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	N	Min	Mean	Med	Max	SD	N	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)	-	-	18.9	9.0	10.0	10.0	11.0	1.4	2	23.4	24.7	-	24.7	-	-	-	14.7	-	-	-	-	-	-	-
Floodprone Width (ft)				12.0	18.5	18.5	25.0	9.2	2	43.0	48.0	-	52.0	-	-	-	-	-	-	-	-	-	_	-
Bankfull Mean Depth (ft)	-	-	1.3	0.9	1.0	1.0	1.1	0.1	2	1.3	1.4	-	1.5	_	_	-	0.9	_	-	-	-	-	_	_
Bankfull Max Depth (ft)				1.2	1.3	1.3	1.5	0.2	2	1.8	1.8	-	2.2	-	-	-	1.13	-	-	-	-	-	-	-
Bankfull Cross Sectional Area (ft ²)		21.5		9.6	9.8	9.8	10.0	0.3	2	33.4	33.4	-	34.6	-	-	-	12.7	-	-	-	-	-	-	-
Width/Depth Ratio				8.4	10.3	10.3	12.1	2.6	2	15.8	18.3	-	18.4	-	-	-	17.0	-	-	-	-	-	-	-
Entrenchment Ratio				1.3	1.8	1.8	2.3	0.7	2	1.7	1.9	_	2.1	-	_	-	5.4	_	_	-	_	-	_	_
Bank Height Ratio				0.9	1.5	1.5	2.0	0.8	2	1.0	1.2	-	1.3	-	_	-	-	_	_	_	-	-	_	_
d50 (mm)				-	-	-		-	-	-	-	-	-	_	_	-	_	_						
Profile			l						<u> </u>			<u> </u>									l			
Riffle Length (ft)				l .	_	-	-	_	l -	20.0	29.0	Ι.	40.0	-	_	Ι.	_	_	10.9	20.4	18.8	31.7	8.6	7
Riffle Slope (ft/ft)				-	_	-			-	0.015	0.023	-	0.028	-	-	0.009	0.017	0.025	0.007	0.017	0.021	0.025	0.007	7
Pool Length (ft)				-	_	_	-	-	-	6.0	18.0	-	42.0	-	-	-	-	-	5.3	10.7	8.7	21.6	5.5	7
Pool Max Depth (ft)				_	-	-	-	-	-	2.3	2.3	-	2.3	-	-	-	_	-	2.0	2.4	2.4	3.1	0.4	6
Pool Spacing (ft)				_	-	-	-	Ė	-	51.0	87.0	-	113.0	-	-	34.1	45.4	56.8	36.2	48.6	47.6	62.2	9.6	6
Pattern										51.0	37.0		113.0		<u> </u>	5+.1	73.4	50.8	30.2	70.0	77.0	02.2	7.0	J
			1	Γ.	_	_	_	_	- I	Ι.	43.0	-	- I	-	_	18.7	24.9	31.2	17.1	27	28.7	33.4	7.4	4
Channel Belt Width (ft)				-	-	-	_	_	-	44.0	75.0	-	103.0	-	-	25.0	31.0	37.0	24.0	37.6	43.9	44.8		3
Radius of Curvature (ft)				-	-	-		-		1		-			-	 			1				11.8	
Rc: Bankfull Width (ft)				-			-		-	-	- 100.0		-	-		-	-	-	1.6	2.6	3.0	3.0	0.8	3
Meander Wavelength (ft)				-	-	-	-	-	-	-	100.0	-	-	-	-	-	- 1.5	-	73.9	92.8	92.4	116	19.2	5
M eander Width Ratio				-	-	-	-	-	<u> </u>	-	1.7	-	-	-	-	-	1.5	-	1.2	1.8	2.0	2.3	0.5	4
	Ι																							
Substrate, Bed and Transport Parameters										1										420/ /	200//2	22%/79	/ / 00/	
Ri% / Ru% / P% / G% / S%					,		-/-/-	,		10	/ / 100/		- / 41%	/00/ /	1.0/					4270/	2070/ 2	2270/ 17	0/ U70	
SC% / Sa% / G% / C% / B% / Be%							1 / 14 /			<u> </u>			130 / 19											
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)					3/4		-	-/-			3.2 / 22		947	90 / - /			0.47					_		
Reach Shear Stress (Competency) lb/ft ²													947				45							
Max Part Size (mm) Mobilized at Bankfull							-									-						-		
Stream Power (Transport Capacity) W/m ²						-							-				1.6							
Additional Reach Parameters										1														
Drainage Area (mi²)						1.							77											
Impervious Cover Estimate (%)							-						-											
Rosgen Classification						(34			<u> </u>	B4					В		
Bankfull Velocity (fps)		-											.5				3.5							
Bankfull Discharge (cfs)		-					-						3.0				66.0							
Valley Length (ft)							-						80				321							
Channel Thalweg Length (ft)										-			00			1	337		-		3'			
Sinuosity							-			ļ		1.	10			<u> </u>	1.05		ļ		1.			
Water Surface Slope (ft/ft)							-			<u> </u>			-			<u> </u>	0.035		<u> </u>		0.0			
Bankfull Slope (ft/ft)							-			<u> </u>			-			<u> </u>	0.035				0.0)33		
Bankfull Floodplain Area (acres)							-						-				-							
Proportion Over Wide (%)										<u> </u>			-											
Entrenchment Class (ER Range)							-			<u> </u>			-											
Incision Class (BHR Range)							-			<u> </u>			-											
ВЕНІ						20).6			<u> </u>			-											
Channel Stability or Habitat Metric							-						-											
Biological or Other							-						-											

¹Reach less than 500 feet and restricted to visual assessment; no cross-sections located in this reach

Non-Applicable.

⁻ Information unavailable.

				am a					ion P	rojec					b (1,									
Parameter	Regio	onal C	urve		Pre-I	xistin	g Con	dition			Refer	ence l	Reach	Data]	Desigr	1		As-	Built /	Basel	ine	_
Dimension & Substrate - Riffle	LL	UL	Eq.	Min	Mean	Med	Max	SD	N	Min	Mean	Med	Max	SD	N	Min	Mean	Max	Min	Mean	Med	Max	SD	N
Bankfull Width (ft)			18.9	7.0	7.9	7.5	9.5	1.2	4	12.0	14.4	-	16.5	-	-	-	14.7	-	14.6	16.6	17.3	17.8	1.77	3
Floodprone Width (ft)				15.0	16.8	16.0	20.0	2.2	4	60.0	72.5	-	72.5	-	-	-	-	-	135.0	168.5	173.5	197.0	31.3	3
Bankfull Mean Depth (ft)	-	-	1.3	1.2	1.3	1.3	1.5	0.2	4	-	_	-	_	-	-	-	0.9	-	0.8	0.8	0.8	1.0	0.11	3
Bankfull Max Depth (ft)				1.5	1.7	1.7	1.8	0.2	4	19	2.3	-	3.3	-	-	-	1.13	-	1.0	1.2	1.1	1.5	0.24	3
Bankfull Cross Sectional Area (ft ²)		21.5		8.3	10.5	10.9	12.1	1.6	4	18.2	25.9	-	35.9	-	-	-	12.7	-	11.0	13.7	13.6	16.6	2.78	3
Width/Depth Ratio				4.7	6.0	5.6	8.1	1.5	4	7.1	8.2	-	10.0	-	_	-	17.0	_	18.1	20.3	19.2	23.4	2.8	3
Entrenchment Ratio				1.7	2.2	2.2	2.5	0.3	4	4.3	4.9	-	5.5	-	_	-	11.5	_	9.3	10.1	10.0	11.0	0.85	3
Bank Height Ratio				1.5	1.9	2.0	2.2	0.3	4	0.7	1.1	-	1.6	-	_	_	-	_	1.0	1.0	1.0	1.0	0	3
d50 (mm)				-	-	-		-	_	-		_	-	-	_	_	-	_					_	
Profile																								
Riffle Length (ft)				Ι.	- I	- I	_	_	-	62.6	82.0	- I	101.4	-	_	Ι.	_	_	12.4	29.5	33.6	47.0	11.6	17
Riffle Slope (ft/ft)				-	-	-	_	_	-	0.006	0.006	-	0.007	-	-	0.006	0.008		0.001	0.006	0.006	0.017	0.004	17
Pool Length (ft)				_	-	-	_	_	-	13.4	45.1	_	80.3	-	-	-	-	-	16.2	24.1	24.2	31.0	4.6	17
Pool Max Depth (ft)				_	-	-	_	_	_	0.4	0.5	_	0.6	-	_	-	_	_	2.3	3.1	3.0	4.2	0.5	17
Pool Spacing (ft)				-	-	-	_	_	-	67.9	84.9	_	101.9	-	_	62.3	74.8	87.3	38.0	60.2	59.5	86.8	15.6	17
Pattern										J 77.7	0 7.7		.01.7			02.3	, 1.0	05	23.0	55.2	27.3	55.6	15.0	-17
Channel Belt Width (ft)				Ι.	l -	- I	-	_	-		_	l -	_	-	_	24.9	49.9	62.3	17.2	33.9	29.0	64.0	13.9	11
Radius of Curvature (ft)				_	_	-	_	_	-	_		_	_	-	_	19.0	25.0	31.0	22.5	29.1	27.4	36.6	5.2	7
Rc: Bankfull Width (ft)				_	_	_	_	_	-	_		_	_	-	_	-	-	-	1.4	1.8	1.7	2.2	0.3	7
Meander Wavelength (ft)				-	_	-		_	-	_		-	_	-	_	-	-	_	38.1	130.8	136.9	249.7	58.2	12
Meander Width Ratio				<u> </u>	_	_		_	-			_	_	-	-		3.2	_	1.0	2.0	1.7	3.9	0.8	11
Wealider Width Ratio																	3.2		1.0	2.0	1./	3.9	0.8	11
Substrate, Bed and Transport Parameters																								
Ri% / Ru% / P% / G% / S%																				50% /	/ 3%/ 3	9%/8%	/ 0%	
						200/ /	-/-/-	/ -					-/-/-	/-										
SC% / Sa% / G% / C% / B% / Be%						3U%0 /					_/	9% / - /												
SC% / Sa% / G% / C% / B% / Be%								/-/-																
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						/11/2	22 / 29	/-/-					68 / 70				0.42							
$\frac{d16/d35/d50/d84/d95/di^{p}/di^{sp}(mm)}{Reach Shear Stress}(Competency)lb/ft^{2}$						/11/2	22 / 29	/-/-				5/54/0	58 / 70				0.42							_
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull						/11/2	22 / 29	/-/-				54/0	58 / 70				45							
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) M obilized at Bankfull Stream Power (Transport Capacity) W/m ²						/11/2	22 / 29	/-/-				6 / 54 / c -	58 / 70											
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters						/11/2	22 / 29	/-/-				5/54/0	68 / 70				45							
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²)						1.:	22 / 29	/-/-				0.7	68 / 70				45							
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%)						1	22 / 29	/-/-				0.53	68 / 70				45 1.3							
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification						1.:	22 / 29	/-/-				0.7	72				45 1.3 C4							
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps)						1.:	22 / 29	/-/-				0.0 E	58 / 70				45 1.3 C4							
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs)						1	22 / 29	/-/-				0.1 E	68 / 70				45 1.3 C4 - 66.0							
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft ² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m ² Additional Reach Parameters Drainage Area (mi ²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft)						1.:	22 / 29	/-/-				0.54 / 0.55 E	68 / 70				45 1.3 C4 - 66.0 989				(- C		
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m² Additional Reach Parameters Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft)						1	22 / 29	/-/-				0.54/0	68 / 70				45 1.3 C4 - 66.0 989 1,088				1,1	01		
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m² Additional Reach Parameters Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity						1.:	22 / 29 	/-/-				0.54/0	558 / 70 				45 1.3 C4 - 66.0 989 1,088				1,1	01		
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m² Additional Reach Parameters Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft)						1	22/29	/-/-				0.54 / 6	58 / 70 				45 1.3 C4 - 66.0 989 1,088				1,1 1. 0.0	01 12 076		
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m² Additional Reach Parameters Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft)						1	200	/-/-				0.75 / 54 / 0	772				45 1.3 C4 - 66.0 989 1,088 1.1 0.0085				1,1	01 12 076		
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m² Additional Reach Parameters Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres)						1	22/29					0.75	772 4 4 4				45 1.3 C4 - 66.0 989 1,088				1,1 1. 0.0	01 12 076		
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ (mm) Reach Shear Stress (Competency) lb/ft² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m² Additional Reach Parameters Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%)						1	22 / 29 · · · · · · · · · · · · · · · · · ·					0.75	72				45 1.3 C4 - 66.0 989 1,088 1.1 0.0085				1,1 1. 0.0	01 12 076		
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ (mm) Reach Shear Stress (Competency) lb/ft² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m² Additional Reach Parameters Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range)						1.1.	22 / 29 · · · · · · · · · · · · · · · · · ·					0.3754/c/ 0.3754	44				45 1.3 C4 - 66.0 989 1,088 1.1 0.0085				1,1 1. 0.0	01 12 076		
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ / (mm) Reach Shear Stress (Competency) lb/ft² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m² Additional Reach Parameters Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range) Incision Class (BHR Range)						1.1.1						0.755/54/0	558/70				45 1.3 C4 - 66.0 989 1,088 1.1 0.0085				1,1 1. 0.0	01 12 076		
d16 / d35 / d50 / d84 / d95 / di ⁹ / di ⁹ (mm) Reach Shear Stress (Competency) lb/ft² Max Part Size (mm) Mobilized at Bankfull Stream Power (Transport Capacity) W/m² Additional Reach Parameters Drainage Area (mi²) Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) Bankfull Discharge (cfs) Valley Length (ft) Channel Thalweg Length (ft) Sinuosity Water Surface Slope (ft/ft) Bankfull Slope (ft/ft) Bankfull Floodplain Area (acres) Proportion Over Wide (%) Entrenchment Class (ER Range)						1.1.	22/29					0.3754/c/ 0.3754	558/70				45 1.3 C4 - 66.0 989 1,088 1.1 0.0085				1,1 1. 0.0	01 12 076		

Non-Applicable.

		~ .								Strea						•								
n .	ъ.			Strea					oratio	n Proj					(402						D 114	/ D		
Parameter	Regi	onal C	urve		Pre-I	Existin	g Con	dition			Keier	ence	Reach	Data			Design	1		As-	Built	/ Base	line	
Dimension & Contracts Dieg		T 17	E	3.42	24	M- 4	34	CD.	N.T	M:	M	M- 3	M	CD.	N.	Min	M	34	140	M	Mad	M	CD.	N.T
Dimension & Substrate - Riffle	LL -	UL	Eq. 7.4	Min	Mean			SD	N 2	Min 23.4	24.7	Med	Max 24.7	SD	N	MIII	Mean 5.4	Max	Min 4.4	Mean 5.2	Med 5.2	5.9	SD 1.06	N 2
Bankfull Width (ft)	-	-	7.4	3.5 8.0	4.1	4.1	4.7 8.0	0.8	2	43.0	48	-	52.0	-	-	-	5.4	-	14.2	19.1	19.1	24.0	6.93	2
Floodprone Width (ft)	-	_	0.6	0.4	8.0	8.0		0.0	2	1.3	1.35	-	1.5	-	-	_	0.4	-	0.4	0.4	0.4	0.4	0.93	2
Bankfull Mean Depth (ft) Bankfull Max Depth (ft)	-	-	0.0	0.4	0.5	0.5	0.5	0.1	2	1.8	1.8	-	2.2	-	-	-	0.4	-	0.4	0.4	0.4	0.4	0.03	2
Bankfull Cross Sectional Area (ft ²)		4.0		1.4	0.7		2.3	0.1	2	33.4	33.4	-	34.6	-	-	_	2.2	_	1.8	2.0	2.0	2.1	0.01	2
Width/Depth Ratio		1.0		8.5	9.0	9.0	9.5	0.6	2	15.8	18.3	-	18.4	-	-	-	13.4	-	10.9	13.8	13.8	16.6	3.99	2
Entrenchment Ratio				1.6	2.0	2.0	2.3	0.7	2	1.7	1.9	-	2.1	-	-	-	5.6	_	3.2	3.6	3.6	4.0	0.57	2
Bank Height Ratio				2.3	6.2	6.2	10.0	5.4	2	1.0	1.2		1.3	_			5.0		1.0	1.0	1.0	1.0	0.57	2
d50 (mm)				2.3	0.2	- 0.2	10.0	-	-	-	-	_	-	_	-	-	_	_	1.0	1.0	1.0	1.0	0	2
Profile		<u> </u>																					<u> </u>	
Riffle Length (ft)				I -	-	Ι.	-	I -	_	20.0	29.0	- I	40.0	-	T -	-	_	Ι.	6.1	10.0	9.8	15.5	2.3	22
Riffle Slope (ft/ft)				H	H	-	H	-	-	0.015	0.023	-	0.028	-	H	0.017	0.026	0.035		0.025	0.023	0.047	0.013	22
Pool Length (ft)				-	-	-	-	-	-	6.0	18.0	-	42.0	-	-	-	-	0.033	1.7	5.0	4.5	10.2	2.0	22
Pool Max Depth (ft)				-	-	-	-	-	-	2.3	2.3	-	2.3	-	-	-	-	-	1.1	1.5	1.5	1.9	0.2	22
Pool Spacing (ft)				-	-	-	-	_	-	51.0	87.0	-	113.0	-	-	12.4	16.5	20.7	13.5	17.2	15.5	25.2	3.4	21
		<u> </u>								31.0	67.0		113.0			12.7	10.5	20.7	13.3	17.2	15.5	23.2	5.4	21
Pattern Channel Belt Width (ft)				I -	Ι.	Ι.	l -	-	_		43.0	l -	I -	-	I -	6.4	8.5	10.6	6.9	9.9	9.8	12.6	1.4	14
Radius of Curvature (ft)				_	-	-	-	_	-	44.0	75.0	-	103.0	-	-	9.0	11.0	13.0	5.8	9.5	8.9	15.3	3.2	8
Re: Bankfull Width (ft)				-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	1.1	1.8	1.7	2.9	0.6	8
Meander Wavelength (ft)				_	H	-			-		100.0		-	_			_		29.1	32.1	31.4	39.7	2.7	15
Meander Width Ratio				-	-	_	_	_	-	-	1.7	-	-	-	_	-	2.8	-	1.3	1.9	1.9	2.4	0.3	14
Wealder Width Ratio	<u> </u>	<u> </u>				_					1.7						2.0		1.5	1.9	1.9	2.4	0.5	14
Substrate, Bed and Transport Parameters	1																							
Ri% / Ru% / P% / G% / S%							_													59%	/ 0%/ 2	9%/5%	6/7%	
SC% / Sa% / G% / C% / B% / Be%							-			1%	/ 10%	/ 48%	/ 41% /	0% / 1	%									
d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)							-						130 / 19											
Reach Shear Stress (Competency) lb/ft ²							-					1.9					0.47					-		
Max Part Size (mm) Mobilized at Bankfull							_					9	1				45					-		
Stream Power (Transport Capacity) W/m ²							_										-							
Additional Reach Parameters																								
Drainage Area (mi²)						0.	10					2.	77											
Impervious Cover Estimate (%)							_																	
Rosgen Classification						(3					В	4				B4]	В		
Bankfull Velocity (fps)		-					-					4.	.5				-							
Bankfull Discharge (cfs)		-					-					12:	3.0				9.0							
Valley Length (ft)							-					380	0.0				375							
Channel Thalweg Length (ft)							-					400	0.0				394				4	02		
Sinuosity							-					1.					1.05				1.	07		
Water Surface Slope (ft/ft)							-										0.033				0.0)25		
Bankfull Slope (ft/ft)							-										-				0.0)29		
Bankfull Floodplain Area (acres)							-										-							
Proportion Over Wide (%)							-																	
Entrenchment Class (ER Range)							-																	
Incision Class (BHR Range)							-																	
ВЕНІ						26	5.6																	
Channel Stability or Habitat Metric							-																	
Biological or Other																								

⁻ Information unavailable.

Non-Applicable.

This Page Intentionally Left Blank

										1	Table					-	logy &	•				_	umma	ıry																
		(on 1 (P					Cı		ection	2 (Rif Branch	ffle)			1		Cross-	Secti		(Riffle)		Π			ss-Secti Cochran	,	,				(on 5 (Po Branch			
Dimension	Base	MY1	MY2	MY	3 MY4	MY5	5 MY6	MY7	Base	MY1	MY2	МҮ3	MY4	MY5	MY6	MY7	Base	MY1	MY	2 MY	Y3 M	Y4 M	Y5 MY	6 MY	7 Base	MY	1 M	IY2 MY	3 MY4	MY5	MY6	MY7	Base	MY1	MY2	2 MY3	MY4	MY5	MY6	MY7
Record Elevation (datum) Used	2,156.1	2,156.1	-					:	2,155.8	2,155.8	-						2,152.1	2,152.	.1 -						2,151	9 2,151	1.9	-					2,149.9	2,149.9) -					
Bankfull Width (ft)	16.7	16.8	-						17.3	17.1	-						14.6	15.4	-						16.2	17.	4	-					17.0	17.3	-					
Floodprone Width (ft)	>217.0	>217.0	-						>173.5	>173.5	-						>135.0	>135.	0 -						>217.	5 >217	7.5	-					>236.5	>236.5	-					
Bankfull Mean Depth (ft)	1.6	1.1	-						1.0	0.9	-						0.8	0.7	-						1.9	1.8	3	-					1.5	1.5	-					
Bankfull Max Depth (ft)	3.1	2.6	-						1.5	1.4	-						1.0	1.1	-						3.5	4.3	3	-					3.3	3.4	-					
Bankfull Cross Sectional Area (ft ²)	27.5	19.2	-						16.6	15.2	-						11.0	11.3	-						31.0	31	3	-					25.4	26.4	-					
Bankfull Width/Depth Ratio	10.2	14.7	-						18.1	19.2	-						19.2	20.8	-						8.5	9.7	7	-					11.4	11.4	-					
Bankfull Entrenchment Ratio	>13.0	>12.9	-						>10.0	>10.2	-						>9.3	>8.8	-						>13.4	1 >12.	.5	-					>13.9	>13.7	-					
Bankfull Bank Height Ratio	1.0	1.0	-						1.0	1.0	-						1.0	1.0	-						1.0	1.0)	-					1.0	1.0	-					
d50 (mm)	-	N/A	-						-	1.4	-						-	28.0	-						-	N/A	4	-					-	N/A	-					
		C			on 6 (Ri Branc					Cı			7 (Rif ranch						Cross Pa		tion 8 1 Brai	` /		•		•		s-Sectio	,											
Dimension	Base	MY1	MY2	MY.	3 MY4	MY5	5 MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY	2 MY	Y3 M	Y4 M	Y5 MY	6 MY	7 Base	MY	1 M	IY2 MY	3 MY4	MY5	MY6	MY7								
Record Elevation (datum) Used	2,149.7	2,149.7	-						2,160.2	2,160.2	-						2,159.8	2,159.	.8 -						2,154	6 2,154	4.6	-												
Bankfull Width (ft)	17.8	17.9	-						4.4	4.5	-						6.8	7.2	-						5.9	6.6	5	-												
Floodprone Width (ft)	>197.0	>197.0	-						>14.2	>14.2	-						>93.7	>93.7	7 -						>24.0) >24.	.0	-					1							

0.8

1.8

5.2

9.0

>13.7

1.0

0.8

2.0

5.5

9.6

>12.9

1.0

N/A

0.4

0.6

2.1

16.6

>4.0

1.0

0.3

0.6

2.0

21.7

>3.7

1.0

3.9

N/A - Item does not apply.

Bankfull Mean Depth (ft) 0.8

Bankfull Max Depth (ft)

Bankfull Entrenchment Ratio >11.0

Bankfull Bank Height Ratio 1.0

d50 (mm)

Bankfull Cross Sectional Area (ft²) 13.6

Bankfull Width/Depth Ratio 23.4

0.8

1.2

13.6

23.4

>11.0

1.0

11.0

1.1

0.4

0.6

1.8

10.9

>3.2

1.0

0.4

0.7

2.0

10.4

>3.1

1.0

4.3

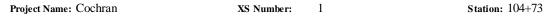
⁻ Information Unavailable

																				1							a - St							£4)																						
Parameter			Base	eline							M	Y - 1							MY	- 2						М	Y-3						N	<u>feet)</u> IY - 4			Т			N	MY - 5			Т			MY	7 - 6			T]	MY - 7		
Dimension & Substrate - Riffle Bankfull Width (ft) Floodprone Width (ft)	Min	Mean	Med	Max	x S	D	n	Mi	n N	Aean	Med	Ma	x S	D	n	Min	Me	an I	Med	Max	SD	1	ıl	Min	Mean	Med	Max	x S	D	n	Min	Mean	Med	l Ma	x S	SD	n	Min	Mear	n Me	d Ma	ax S	D	n N	Iin N	I ean	Med	Max	SD	n	Mi	n Me	an Me	d Ma	ax S	D n
Bankfull Width (ft)	14.6	16.6	17.3	17.8	3 1	.8	3	15.	4	16.8	17.1	17.9) 1	.3	3	-	-		-	-	-																																			
Floodprone Width (ft)	135.0	168.5	173.5	197.	0 31	1.3	3	135	.0 1	68.5	173.5	197.	0 31	1.3	3	-	-		-	-	-																																			
Bankfull Mean Depth (ft)	0.8	0.8	0.8	1.0	0).1	3	0.7	7	0.8	0.8	0.9	0	.1	3	-	-		-	-	-																																			
Bankfull Max Depth (ft)	1.0	1.2	1.1	1.5	0	0.2	3	1.1	1	1.2	1.2	1.4	0	.2	3	-	-		-	-	-																																			
Bankfull Cross-Sectional Area (ft ²)	11.0	13.7	13.6	16.6	5 2	.8	3		3	13.4	13.6	15.	2 2	.0	3	-	_		-	-	-																																			
Width/Depth Ratio							3	19.	2 :			23.		.1	3	-	_		-	-	-	Τ.																																		
Entrenchment Ratio	9.3	10.1	10.0	11.0) 0	1.9	3	8.8	3	10.0	10.2	11.0) 1	.1	3	-			-	-	-																																			
Bank Height Ratio							3	1.0		1.0				.0	3	-	1 -		-	-	-	1 .	.																																	
Profile	<u> </u>																-					_						_						•						-	_									•	_					
Riffle Length (ft)	12.4	29.5	33.6	47.0) 11	1.6	17																																																	
Riffle Length (ft) Riffle Slope (ft/ft)	0.001	0.006	0.006	0.01	7 0.0	004	17		\top																																															
Pool Length (ft)	16.2	24.1	24.2	31.0) 4	.6	17																																																	
Pool Max Depth (ft)	2.3	3.1	3.0	4.2	0).5	17		1																																															
Pool Spacing (ft)	38.0	60.2	59.5	86.8	3 15	5.6	17																																																	
Pattern																	-										-							_												<u> </u>					_					
Channel Belt Width (ft)	17.2	33.9	29.0	64.0) 13	3.9	11																																																	
Radius of Curvature (ft)							7																																																	
Rc: Bankfull Width (ft/ft)							7		1																																															
Meander Wavelength (ft)							12		1																																															
Meander Width Ratio							11		1																																															
Additional Reach Parameters																	-									<u> </u>	-	_						_												<u> </u>					_					
Rosgen Classification			(C																																																				
Channel Thalweg Length (ft)			1,1	101																																																				
Sinuosity (ft)			1.	12																																																				
Water Surface Slope (Channel) (ft/ft)			0.0																																																					
Bankfull Slope (ft/ft)			0.0																																																					
Ri% / Ru% / P% / G% / S%	50%	3%	39%	8%	0	1%																																																		

- Information Unavailable

N/A - Information does not apply. $Ri = Riffle \ / \ Ru = Run \ / \ P = Pool \ / \ G = Glide \ / \ S = Step$

																Ta Coch	able 1	lb cor	nt'd. I	Monit Vetlan	oring I d Rest	Data -	Stre ar	n Rea	ch Da Parris	ata Su	mmar	y 402)																					
Parameter	1		Basel	line					М	Y-1						7 - 2	ian be	ı cam	and v	v C tiaii		Y - 3	n i io,	ject = 1	41113	n Dia		MY - 4			Т			MY - 5	5		Т			MY -	6					MY	- 7		
Dimension & Substrate - Riffle	Min	Mean 1	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mea	n Med	Max	SD	n	Min	Mea	n Me	d Ma	ax SE	n	Mi	in Me	an Mo	ed N	Iax S	SD	n	Min Me	an N	Ied N	Max	SD	n N	Min 1	Mean	Med	Max	SD	n
Bankfull Width (ft) 4.4	5.2	5.2	5.9	1.1	2	4.5	5.6	5.6	6.6	1.5	2	-	-	-	-	-	-																														1	
Floodprone Width (ft) 14.2	19.1	19.1	24.0	6.9	2	14.2	19.1	19.1	24.0	6.9	2	-	-	-	-	-	-																														Ī	
Bankfull Mean Depth (ft	0.4	0.4	0.4	0.4	0.0	2	0.3				0.1	2	-	-	-	-	-	-																															
Rankfull May Denth (ft	0.6	0.6	0.6	0.6	0.0	2	0.6	0.7	0.7	0.7	0.1	2	-	-	-	-	-	-																															
Bankfull Cross-Sectional Area (ft ²	1.8	2.0	2.0	2.1	0.2	2	2.0	2.0	2.0	2.0	0.0	2	-	-	-	-	-	-																															
Bankfull Cross-Sectional Area (ft ² Width/Depth Ratio	10.9	13.8	13.8	16.6	4.0	2	10.4	16.1	16.1	21.7	8.0	2	-	-	-	-	-	-																														ĺ –	
Entrenchment Ratio	3.2	3.6	3.6	4.0	0.6	2	3.1	3.4	3.4	3.7	0.4	2	-	-	-	-	-	-																														ĺ	
Bank Height Ratio	1.0	1.0	1.0	1.0	0.0	2	1.0	1.0	1.0	1.0	0.0	2	-	-	-	-	-	-																															
Profile	•		•					•			•					•	•	•						•				•									•						•						
Riffle Length (ft) 6.1	10.0	9.8	15.5	2.3	22																																											
Riffle Slope (ft/ft	0.00	0.025 0	.023	0.047	0.013	22																																											
Pool Length (ft	1.7	5.0	4.5	10.2	2.0	22																																											
Pool Max Depth (ft	1.1	1.5	1.5	1.9	0.2	22																																											$\overline{}$
Pool Spacing (ft	13.5	17.2	15.5	25.2	3.4	21																																											
Pattern	,								1													1													<u> </u>				-					<u> </u>	-				
Channel Belt Width (ft	6.9	9.9	9.8	12.6	1.4	14																																											$\overline{}$
Radius of Curvature (ft			8.9	15.3	3.2	8																																											_
Rc: Bankfull Width (ft/ft	1.1	1.8	1.7	2.9	0.6	8																																											-
Meander Wavelength (ft																																																	
Meander Width Ratio	1.3	1.9	1.9	2.4	0.3	14																																											
Additional Reach Parameters									-	-							1	1		_	_	-	-	1		_	-			-						-		<u> </u>											
Rosgen Classification	1		В																																														
Channel Thalweg Length (ft			402	2																																												-	-
Sinuosity (ft)		1.0	17																																													
Water Surface Slope (Channel) (ft/ft)		0.02																																														
Bankfull Slope (ft/ft)		0.02	29																																													
Ri% / Ru% / P% / G% / S%		0% 2			7%																																												


- Information Unavailable

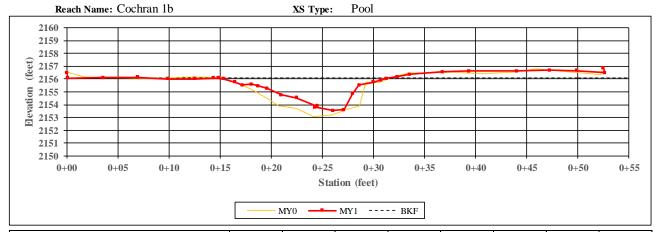
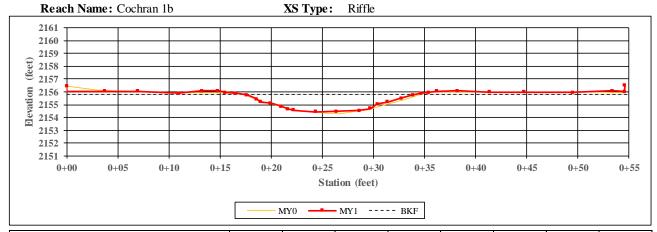

N/A - Information does not apply. $Ri = Riffle \ / \ Ru = Run \ / \ P = Pool \ / \ G = Glide \ / \ S = Step$

Table	e 12. Cochran	Stream and Wetland Bank Pin Arrays	Restoration Pro	ject	
Cross Section		Length of Expos	sed Pin (mm)		
Number	Downstream	Middle	Upstream	Rate (mm/yr)	Rate (ft/yr)
1	0_{B}	0_{B}	0_{B}	0	0.00
4	0_{B}	0_{B}	0_{B}	0	0.00
8	0_{B}	0_{B}	0_{B}	0	0.00

^{0&}lt;sup>B</sup>= Buried Bank Pin

^{*}Data Represented Collected During MY1

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	16.7	16.8	-	-	-	-	-	-
Floodprone Width (ft)	217.0	217.0	-	-	-	-	-	-
Bankfull Mean Depth (ft)	1.6	1.1	-	-	-	-	-	-
Bankfull Max Depth (ft)	3.1	2.6	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	27.5	19.2	-	-	-	-	-	-
Width/Depth Ratio	10.2	14.7	-	-	-	-	-	-
Entrenchment Ratio	13.0	12.9	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

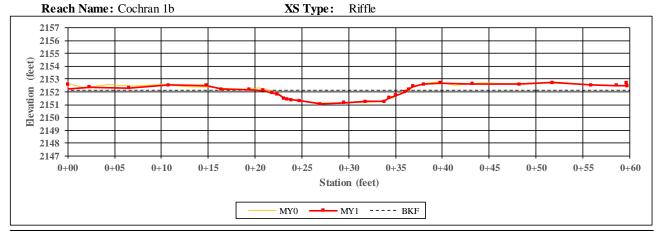


Left Descending Bank

Right Descending Bank

Project Name: Cochran XS Number: 2 Station: 105+08

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	17.3	17.1	-	-	-	-	-	-
Floodprone Width (ft)	173.5	173.5	-	-	-	-	-	-
Bankfull Mean Depth (ft)	1.0	0.9	-	-	-	-	-	-
Bankfull Max Depth (ft)	1.5	1.4	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	16.6	15.2	-	-	-	-	-	-
Width/Depth Ratio	18.1	19.2	-	-	-	-	-	-
Entrenchment Ratio	10.0	10.2	-	-	-	-	-	1
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

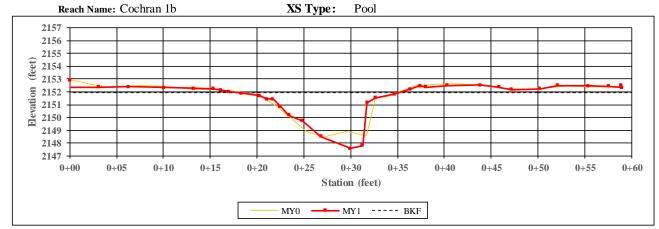


Left Descending Bank

Right Descending Bank

Project Name: Cochran XS Number: 3 Station: 110+60

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	14.6	15.4	-	-	-	-	-	-
Floodprone Width (ft)	135.0	135.0	-	-	-	-	-	-
Bankfull Mean Depth (ft)	0.8	0.7	-	-	-	-	-	-
Bankfull Max Depth (ft)	1.0	1.1	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	11.0	11.3	-	-	-	-	-	-
Width/Depth Ratio	19.2	20.8	-	-	-	-	-	-
Entrenchment Ratio	9.3	8.8	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

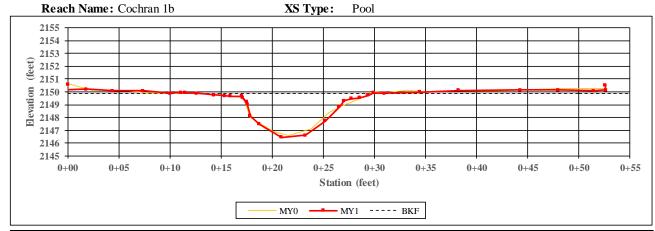


Left Descending Bank

Right Descending Bank

Project Name: Cochran XS Number: 4 Station: 110+90

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	16.2	17.4	-	-	-	-	-	-
Floodprone Width (ft)	217.5	217.5	-	-	-	-	-	-
Bankfull Mean Depth (ft)	1.9	1.8	-	-	-	-	-	-
Bankfull Max Depth (ft)	3.5	4.3	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	31.0	31.3	-	-	-	-	-	-
Width/Depth Ratio	8.5	9.7	-	-	-	-	-	-
Entrenchment Ratio	13.4	12.5	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

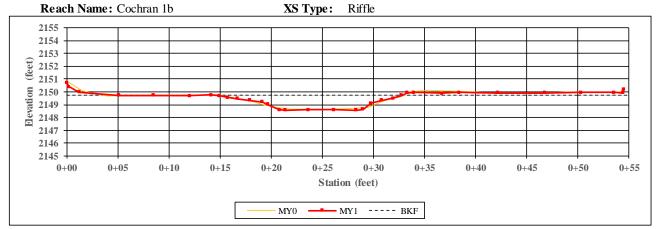


Left Descending Bank

Right Descending Bank

Project Name: Cochran XS Number: 5 Station: 113+08

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	17.0	17.3	-	-	-	-	-	-
Floodprone Width (ft)	236.5	236.5	-	-	-	-	-	-
Bankfull Mean Depth (ft)	1.5	1.5	-	-	-	-	-	-
Bankfull Max Depth (ft)	3.3	3.4	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	25.4	26.4	-	-	-	-	-	-
Width/Depth Ratio	11.4	11.4	-	-	-	-	-	-
Entrenchment Ratio	13.9	13.7	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

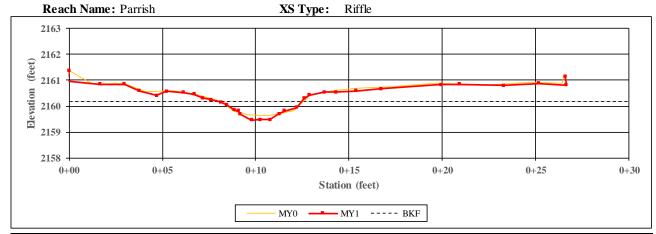


Left Descending Bank

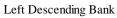
Right Descending Bank

Project Name: Cochran XS Number: 6 Station: 113+44

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	17.8	17.9	-	-	-	-	-	-
Floodprone Width (ft)	197.0	197.0	-	-	-	-	-	-
Bankfull Mean Depth (ft)	0.8	0.8	-	-	-	-	-	-
Bankfull Max Depth (ft)	1.1	1.2	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	13.6	13.6	-	-	-	-	-	-
Width/Depth Ratio	23.4	23.4	-	-	-	-	-	-
Entrenchment Ratio	11.0	11.0	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

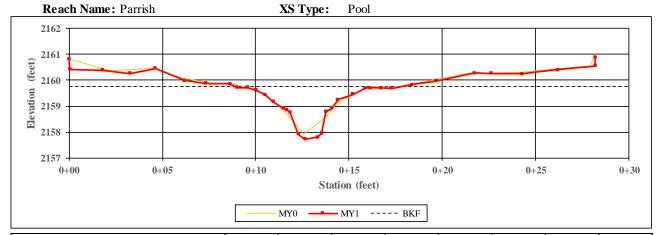


Left Descending Bank


Right Descending Bank

Project Name: CochranXS Number:7Station: 200+88

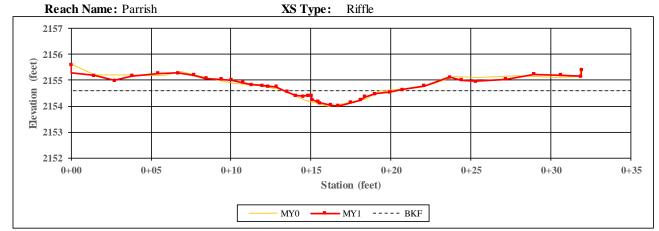
CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	4.4	4.5	-	-	-	-	-	-
Floodprone Width (ft)	14.2	14.2	-	-	-	-	-	-
Bankfull Mean Depth (ft)	0.4	0.4	-	-	-	-	-	-
Bankfull Max Depth (ft)	0.6	0.7	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	1.8	2.0	-	-	-	-	-	-
Width/Depth Ratio	10.9	10.4	-	-	-	-	-	-
Entrenchment Ratio	3.2	3.1	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-



Right Descending Bank

Project Name: CochranXS Number:8Station: 201+07

CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	6.8	7.2	-	-	-	-	-	-
Floodprone Width (ft)	93.7	93.7	-	-	-	-	-	-
Bankfull Mean Depth (ft)	0.8	0.8	-	-	-	-	-	-
Bankfull Max Depth (ft)	1.8	2.0	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	5.2	5.5	-	-	-	-	-	-
Width/Depth Ratio	9.0	9.6	-	-	-	-	-	-
Entrenchment Ratio	13.7	12.9	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

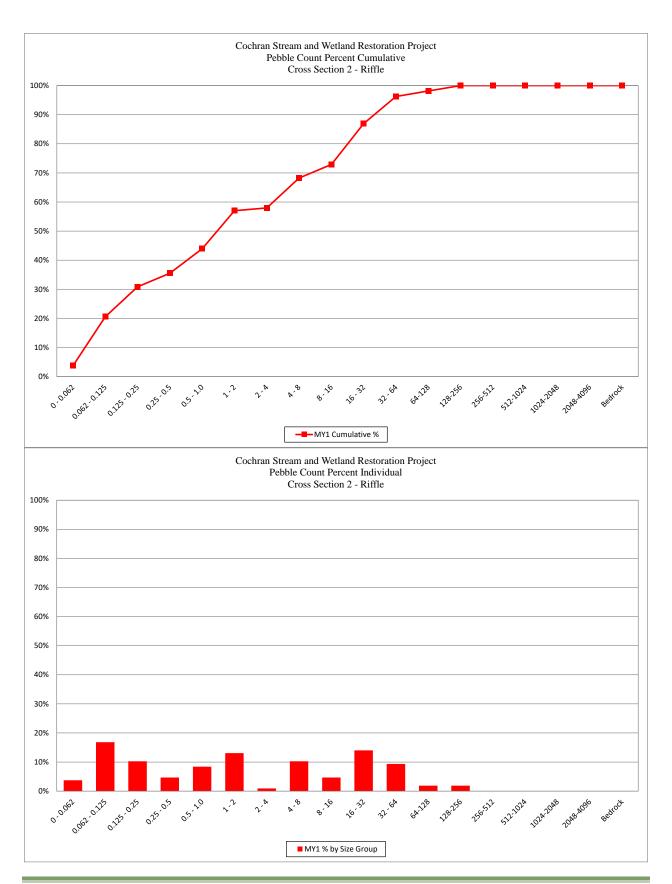


Left Descending Bank

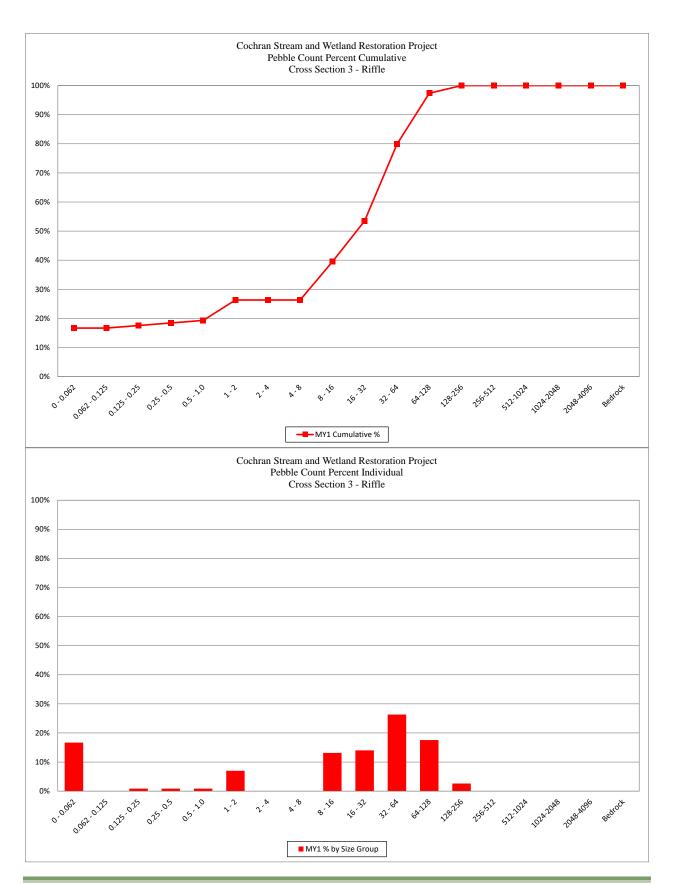
Right Descending Bank

Project Name: Cochran XS Number: 9 Station: 202+86

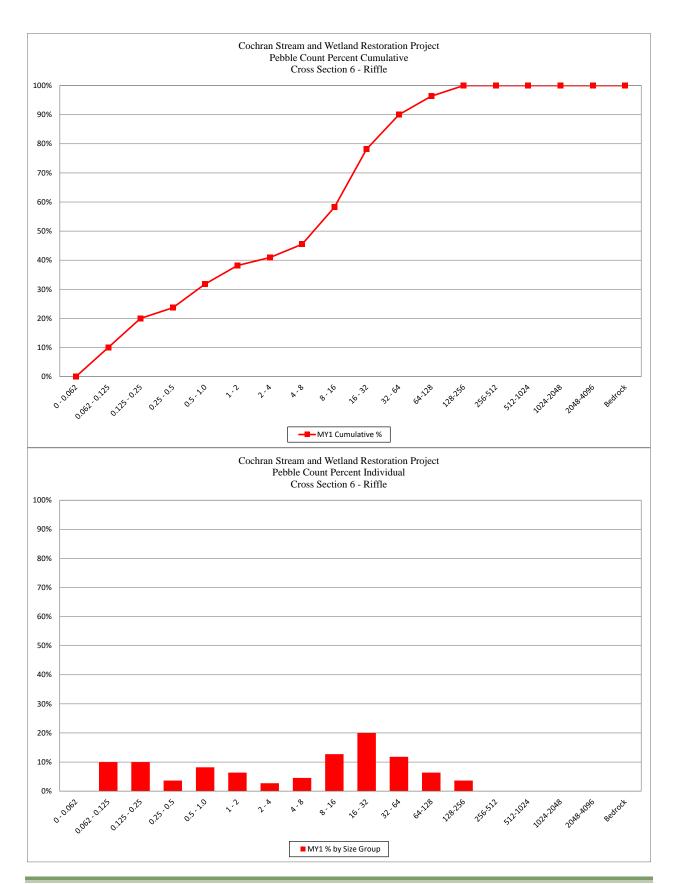
CHANNEL DIMENSIONS SUMMARY	MY0	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankful Width (ft)	5.9	6.6	-	-	-	-	-	-
Floodprone Width (ft)	24.0	24.0	-	-	-	-	-	-
Bankfull Mean Depth (ft)	0.4	0.3	-	-	-	-	-	-
Bankfull Max Depth (ft)	0.6	0.6	-	-	-	-	-	-
Bankfull Cross-Sectional Area (ft ²)	2.1	2.0	-	-	-	-	-	-
Width/Depth Ratio	16.6	21.7	-	-	-	-	-	-
Entrenchment Ratio	4.0	3.7	-	-	-	-	-	-
Bank Height Ratio	1.0	1.0	-	-	-	-	-	-

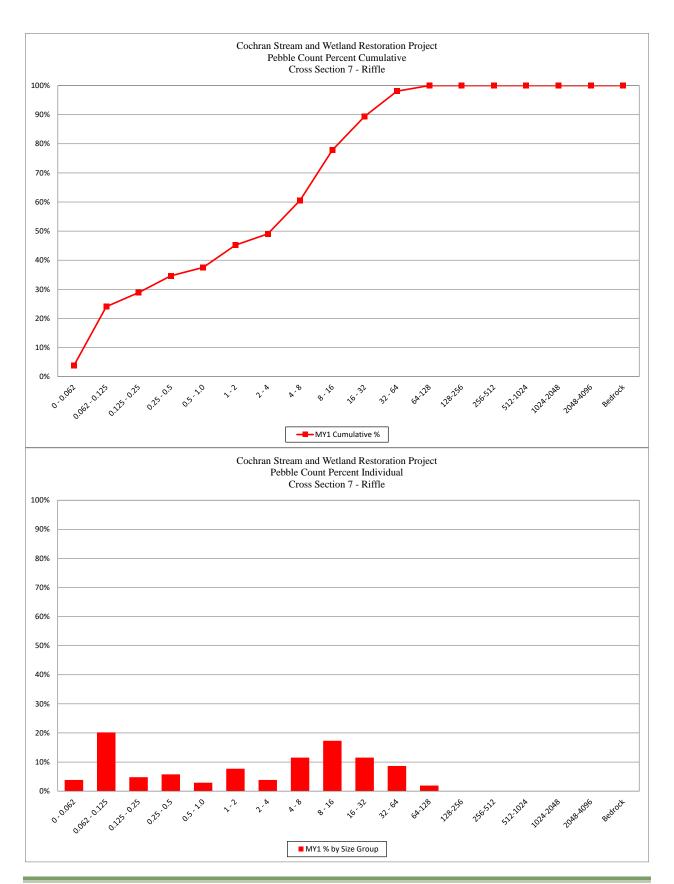


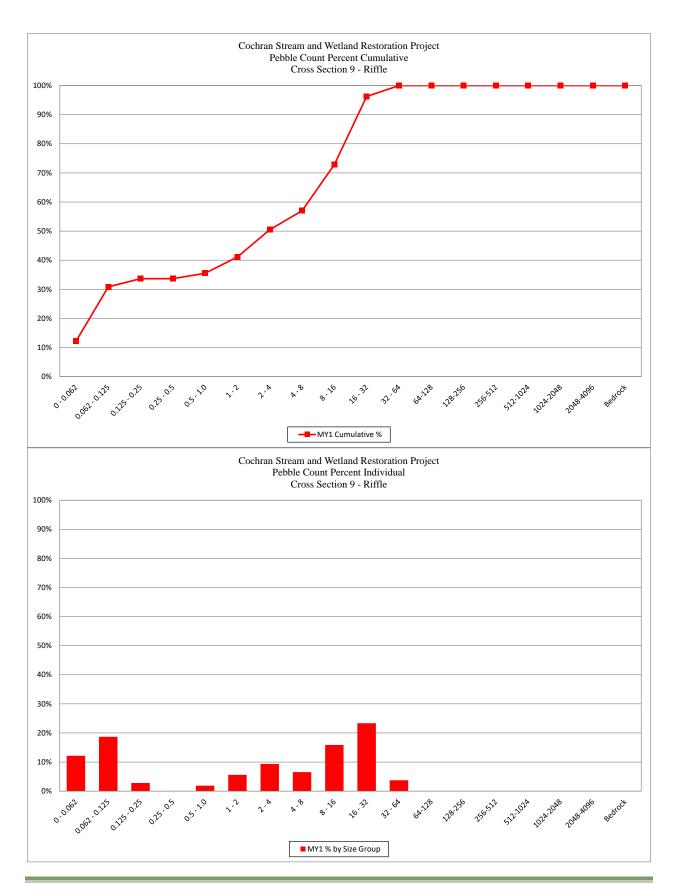
Left Descending Bank



Right Descending Bank


	Cochran						
	Section 2 - I	Riffle					
Monitoring	Monitoring Year - 2015; MY1						
Bed Surface Material		%	%				
Particle Size Class (mm)	Number	Individual	Cumulative				
0 - 0.062	4	3.7%	4%				
0.062 - 0.125	18	16.8%	21%				
0.125 - 0.25	11	10.3%	31%				
0.25 - 0.5	5	4.7%	36%				
0.5 - 1.0	9	8.4%	44%				
1 - 2	14	13.1%	57%				
2 - 4	1	0.9%	58%				
4 - 8	11	10.3%	68%				
8 - 16	5	4.7%	73%				
16 - 32	15	14.0%	87%				
32 - 64	10	9.3%	96%				
64-128	2	1.9%	98%				
128-256	2	1.9%	100%				
256-512	0	0.0%	100%				
512-1024	0	0.0%	100%				
1024-2048	0	0.0%	100%				
2048-4096	0	0.0%	100%				
Bedrock	0	0.0%	100%				
Total	107	100%	100%				
		Sumn	nary Data				
		D50	1.4				
		D84	26				
		D95	57				


	Cochran						
	Section 3 - I	Riffle					
Monitoring	Monitoring Year - 2015; MY1						
Bed Surface Material	Bed Surface Material % %						
Particle Size Class (mm)	Number	Individual	Cumulative				
0 - 0.062	19	16.7%	17%				
0.062 - 0.125	0	0.0%	17%				
0.125 - 0.25	1	0.9%	18%				
0.25 - 0.5	1	0.9%	18%				
0.5 - 1.0	1	0.9%	19%				
1 - 2	8	7.0%	26%				
2 - 4	0	0.0%	26%				
4 - 8	0	0.0%	26%				
8 - 16	15	13.2%	39%				
16 - 32	16	14.0%	54%				
32 - 64	30	26.3%	80%				
64-128	20	17.5%	97%				
128-256	3	2.6%	100%				
256-512	0	0.0%	100%				
512-1024	0	0.0%	100%				
1024-2048	0	0.0%	100%				
2048-4096	0	0.0%	100%				
Bedrock	0	0.0%	100%				
Total	114	100%	100%				
		Sumn	nary Data				
		D50	28				
		D84	71				
		D95	110				


	Cochran					
	Section 6 - I	Riffle				
Monitoring Year - 2015; MY1						
Bed Surface Material	Bed Surface Material % %					
Particle Size Class (mm)	Number	Individual	Cumulative			
0 - 0.062	0	0.0%	0%			
0.062 - 0.125	11	10.0%	10%			
0.125 - 0.25	11	10.0%	20%			
0.25 - 0.5	4	3.6%	24%			
0.5 - 1.0	9	8.2%	32%			
1 - 2	7	6.4%	38%			
2 - 4	3	2.7%	41%			
4 - 8	5	4.5%	45%			
8 - 16	14	12.7%	58%			
16 - 32	22	20.0%	78%			
32 - 64	13	11.8%	90%			
64-128	7	6.4%	96%			
128-256	4	3.6%	100%			
256-512	0	0.0%	100%			
512-1024	0	0.0%	100%			
1024-2048	0	0.0%	100%			
2048-4096	0	0.0%	100%			
Bedrock	0	0.0%	100%			
Total	110	100%	100%			
		Sumn	nary Data			
		D50	11			
		D84	42			
		D95	120			

	Cochran						
	Cross Section 7 - Riffle						
Monitoring	Monitoring Year - 2015; MY1						
Bed Surface Material	Bed Surface Material % %						
Particle Size Class (mm)	Number	Individual	Cumulative				
0 - 0.062	4	3.8%	4%				
0.062 - 0.125	21	20.2%	24%				
0.125 - 0.25	5	4.8%	29%				
0.25 - 0.5	6	5.8%	35%				
0.5 - 1.0	3	2.9%	38%				
1 - 2	8	7.7%	45%				
2 - 4	4	3.8%	49%				
4 - 8	12	11.5%	61%				
8 - 16	18	17.3%	78%				
16 - 32	12	11.5%	89%				
32 - 64	9	8.7%	98%				
64-128	2	1.9%	100%				
128-256	0	0.0%	100%				
256-512	0	0.0%	100%				
512-1024	0	0.0%	100%				
1024-2048	0	0.0%	100%				
2048-4096	0	0.0%	100%				
Bedrock	0	0.0%	100%				
Total	104	100%	100%				
		D50	4.3				
		D84	24				
		D95	41				

	Cochran						
	Section 9 - I	Riffle					
Monitoring	Monitoring Year - 2015; MY1						
Bed Surface Material	Bed Surface Material % %						
Particle Size Class (mm)	Number	Individual	Cumulative				
0 - 0.062	13	12.1%	12%				
0.062 - 0.125	20	18.7%	31%				
0.125 - 0.25	3	2.8%	34%				
0.25 - 0.5	0	0.0%	34%				
0.5 - 1.0	2	1.9%	36%				
1 - 2	6	5.6%	41%				
2 - 4	10	9.3%	50%				
4 - 8	7	6.5%	57%				
8 - 16	17	15.9%	73%				
16 - 32	25	23.4%	96%				
32 - 64	4	3.7%	100%				
64-128	0	0.0%	100%				
128-256	0	0.0%	100%				
256-512	0	0.0%	100%				
512-1024	0	0.0%	100%				
1024-2048	0	0.0%	100%				
2048-4096	0	0.0%	100%				
Bedrock	0	0.0%	100%				
Total	107	100%	100%				
		Sumn	nary Data				
		D50	3.9				
		D84	21				
		D95	30				

Appendix E Hydrologic Data

This Page Intentionally Left Blank

	Table 13. Verification	of Bankfull E	vents				
Cocl	hran Stream and Wetla	nd Restorati	on Project				
		Feet Above Bankfull					
Date of Data Collection	Date of Occurrence	Method	Elevation	(if available)			
Cochran Branch							
12/29/2015	Unknown ¹	Crest Gauge	0.86				
3/24/2016	Unknown ²	Crest Gauge	0.68	1			
8/17/2016	Unknown ³	Crest Gauge	0.58	2			
Parrish Branch							
None Since Construction Completed							

¹Potential Date is 12/24/2015

Photo Verification of Bankfull Events

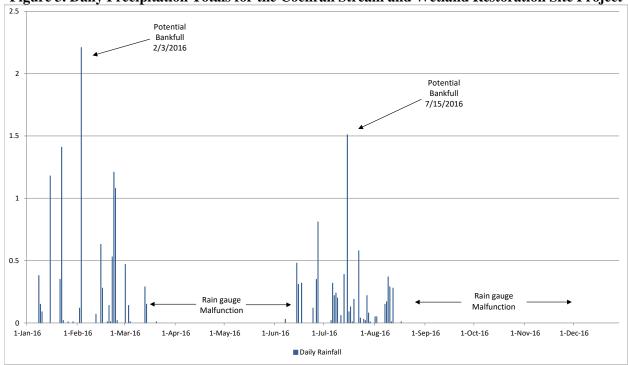
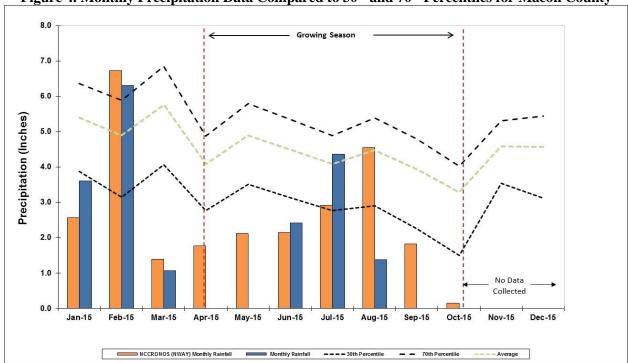
Photo #1 - Cochran Branch Crest Gauge

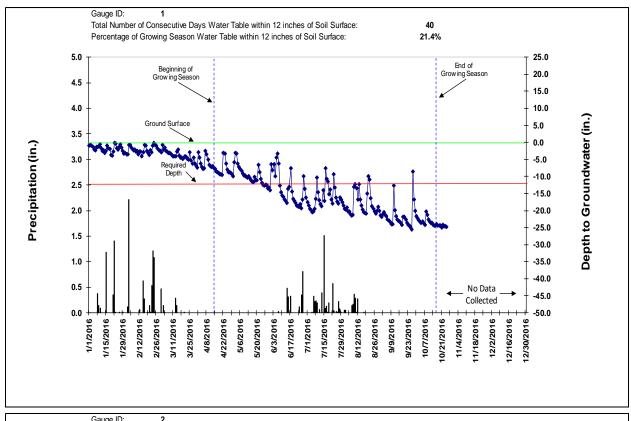
Photo #2 – Cochran Branch Crest Gauge

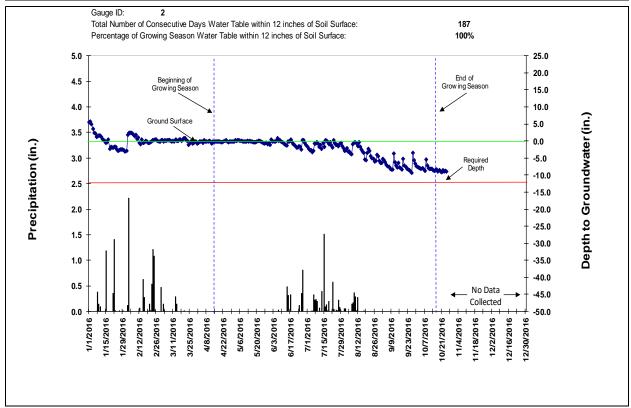
²Potential Date is 2/3/2016

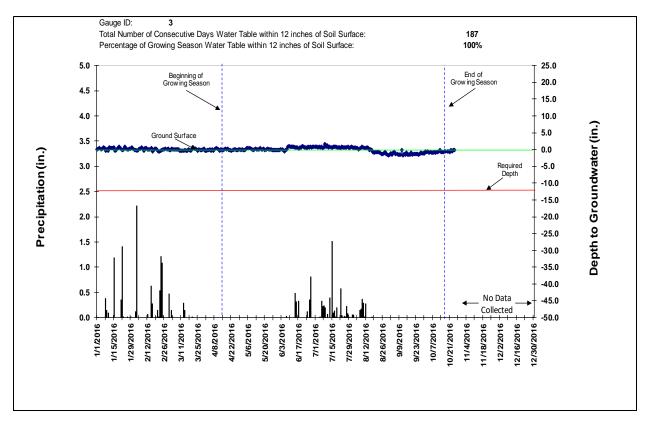
³Potential Date is 7/15/2016

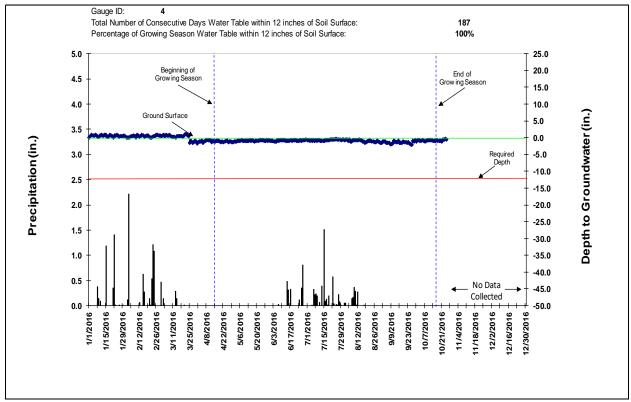
Figure 3. Daily Precipitation Totals for the Cochran Stream and Wetland Restoration Site Project

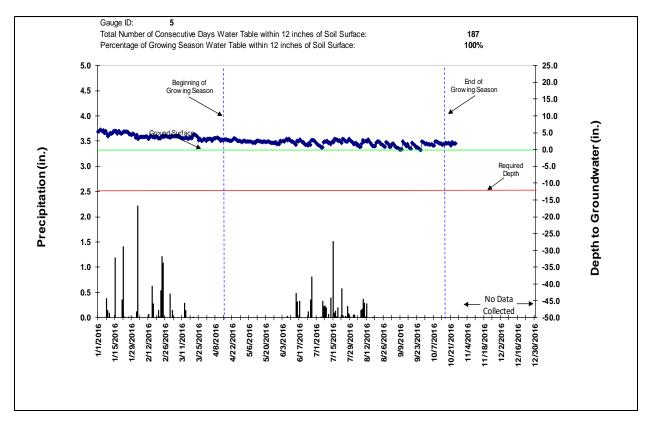




Figure 4. Monthly Precipitation Data Compared to 30th and 70th Percentiles for Macon County




Table 14. Wetland Gauge Attainment Data Summary of Groundwater Monitoring Results Cochran Stream & Wetland Restoration Site															
								Gauge ID	Success Criteria Achieved/ Max Consecutive Days During Growing Season Percent						
									Year 1 ¹	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
(2015)	(2016)	(2017)	(2018)	(2019)	(2020)	(2021)									
GW-1	Yes/18	Yes/40													
	13.6%	21.4%													
GW-2	Yes/ 132	Yes/ 187													
GW-2	100%	100%													
GW-3	Yes/ 132	Yes/ 187													
GW-5	100%	100%													
GW-4	Yes/ 132	Yes/ 187													
	100%	100%													
GW-5	Yes/ 132	Yes/ 187													
	100%	100%													
GW-6	Yes/ 132	Yes/ 187													
GW-0	100%	100%													
GW-7	Yes/ 132	Yes/ 187													
GW-/	100%	100%													
GW-8	Yes/ 132	Yes/ 187													
	100%	100%													


Hydrology Success Criteria = 8%; Growing season = 187 days


¹Max consecutive days during growing season limited to 132 days due to shortened growing season. Percent based on full 187 day growing season

